Predicción de emisiones de CO y HC en motores Otto mediante redes neuronales

Rogelio Santiago León Japa, José Luis Maldonado Ortega, Rafael Wilmer Contreras Urgilés

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)


This paper explains the application of artificial neural networks (ANN) for the prediction of pollutant emissions generated by mechanical failures in ignition engines, from which the percentage of CO (% carbon monoxide) and the particulate in parts per millions of HC (ppm of unburned hydrocarbons) can be quantified, through the study of the Otto cycle intake phase, which is recorded through the physical implementation of a Manifold Absolute Pressure (MAP) sensor. A rigorous protocol of sampling and further statistical analysis is applied. The selection and reduction of attributes of the MAP sensor signal is made based on the greater contribution of information and significant difference with the application of three statistical methods (ANOVA, correlation matrix and Random Forest), from which a database that enables training two backpropagation feedforward neural networks, with which a classification error of 5.4061e−09 and 9.7587e−05 for CO and HC, respectively, can be obtained.

Título traducido de la contribuciónPrediction of CO and HC emissions in Otto motors through neural networks
Idioma originalEspañol
Páginas (desde-hasta)30-39
Número de páginas10
EstadoPublicada - 1 ene. 2020

Nota bibliográfica

Publisher Copyright:
© 2020, Universidad Politecnica Salesiana. All rights reserved.

Palabras clave

  • carbon monoxide (CO)
  • diagnostics
  • neural networks
  • non-combustion hydrocarbons (HC)
  • pollutant emissions
  • prediction


Profundice en los temas de investigación de 'Predicción de emisiones de CO y HC en motores Otto mediante redes neuronales'. En conjunto forman una huella única.

Citar esto