Towards a Brain-Computer Interface Based on Unsupervised Methods to Command a Lower-Limb Robotic Exoskeleton

Denis Delisle-Rodriguez, Ana Cecilia Villa-Parra, Teodiano Bastos

Resultado de la investigación: Contribución a una conferenciaDocumento

Resumen

This work presents a brain-computer interface (BCI) based on unsupervised methods for conveying control commands to a robotic exoskeleton, in order to provide support to patients with severe motor disability during walking. For this purpose, an adaptive spatial filter based on similarity indices is proposed to preserve the useful information on electroencephalography (EEG) signals. Additionally, a method for feature selection based on the Maximal Information Compression Index (MICI), and the representation entropy (RE) is used, increasing its robustness for uncertain patterns, such as gait planning. Good values of accuracy (ACC > 75%) and false positive rate (FPR< 10%) were obtained for four subjects. Thus, this BCI based on unsupervised method may be suitable to recognize uncertainty pattern, such as gait planning.

Idioma originalInglés estadounidense
Páginas1099-1104
Número de páginas6
DOI
EstadoPublicada - 16 ene 2019
EventoProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018 -
Duración: 16 ene 2019 → …

Conferencia

ConferenciaProceedings - 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018
Período16/01/19 → …

Huella

Profundice en los temas de investigación de 'Towards a Brain-Computer Interface Based on Unsupervised Methods to Command a Lower-Limb Robotic Exoskeleton'. En conjunto forman una huella única.

Citar esto