Recommender systems clustering using Bayesian non negative matrix factorization

Jesús Bobadilla, Rodolfo Bojorque, Antonio Hernando Esteban, Remigio Hurtado

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

© 2013 IEEE. Recommender Systems present a high-level of sparsity in their ratings matrices. The collaborative filtering sparse data makes it difficult to: 1) compare elements using memory-based solutions; 2) obtain precise models using model-based solutions; 3) get accurate predictions; and 4) properly cluster elements. We propose the use of a Bayesian non-negative matrix factorization (BNMF) method to improve the current clustering results in the collaborative filtering area. We also provide an original pre-clustering algorithm adapted to the proposed probabilistic method. Results obtained using several open data sets show: 1) a conclusive clustering quality improvement when BNMF is used, compared with the classical matrix factorization or to the improved KMeans results; 2) a higher predictions accuracy using matrix factorization-based methods than using improved KMeans; and 3) better BNMF execution times compared with those of the classic matrix factorization, and an additional improvement when using the proposed pre-clustering algorithm.
Idioma originalInglés estadounidense
Páginas (desde-hasta)3549-3564
Número de páginas16
PublicaciónIEEE Access
DOI
EstadoPublicada - 28 dic. 2017

Huella

Profundice en los temas de investigación de 'Recommender systems clustering using Bayesian non negative matrix factorization'. En conjunto forman una huella única.

Citar esto