Power and Performance Optimization in FPGA-Accelerated Clouds

Título traducido de la contribución: Optimización de la potencia y el rendimiento en nubes aceleradas por Fpga

Producción científica: Contribución a una revistaArtículo

4 Citas (Scopus)


Energy management has become increasingly necessary in data centers to address all energy-related costs, including capital costs, operating expenses, and environmental impacts. Heterogeneous systems with mixed hardware architectures provide both throughput and processing efficiency for different specialized application types and thus have a potential for significant energy savings. However, the presence of multiple and different processing elements increases the complexity of resource assignment. In this paper, we propose a system for efficient resource management in heterogeneous clouds. The proposed approach maps applications' requirement to different resources reducing power usage with minimum impact on performance. A technique that combines the scheduling of custom hardware accelerators, in our case, Field-Programmable Gate Arrays (FPGAs) and optimized resource allocation technique for commodity servers, is proposed. We consider an energy-aware scheduling technique that uses both the applications' performance and their deadlines to control the assignment of FPGAs to applications that would consume the most energy. Once the scheduler has performed the mapping between a VM and an FPGA, an optimizer handles the remaining VMs in the server, using vertical scaling and CPU frequency adaptation to reduce energy consumption while maintaining the required performance. Our evaluation using interactive and data-intensive applications compare the effectiveness of the proposed solution in energy savings as well as maintaining applications performance, obtaining up to a 32% improvement in the performance-energy ratio on a mix of multimedia and e-commerce applications.

Título traducido de la contribuciónOptimización de la potencia y el rendimiento en nubes aceleradas por Fpga
Idioma originalInglés estadounidense
Número de artículoe4526
Páginas (desde-hasta)1-20
PublicaciónConcurrency Computation Practice and Experience
EstadoPublicada - 25 sep. 2018


Profundice en los temas de investigación de 'Optimización de la potencia y el rendimiento en nubes aceleradas por Fpga'. En conjunto forman una huella única.

Citar esto