One-Shot Fault Diagnosis of Three-Dimensional Printers through Improved Feature Space Learning

Chuan Li, Diego Cabrera, Fernando Sancho, Rene Vinicio Sanchez, Mariela Cerrada, Jose Valente De Oliveira

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)


Signal acquisition from mechanical systems working in faulty conditions is normally expensive. As a consequence, supervised learning-based approaches are hardly applicable. To address this problem, a one-shot learning-based approach is proposed for multiclass classification of signals coming from a feature space created only from healthy condition signals and one single sample for each faulty class. First, a transformation mapping between the input signal space and a feature space is learned through a bidirectional generative adversarial network. Next, the identification of different health condition regions in this feature space is carried out by means of a single input signal per fault. The method is applied to three fault diagnosis problems of a three-dimensional printer and outperforms other methods in the literature.

Idioma originalInglés
Número de artículo9161402
Páginas (desde-hasta)8768-8776
Número de páginas9
PublicaciónIEEE Transactions on Industrial Electronics
EstadoPublicada - sep. 2021

Nota bibliográfica

Publisher Copyright:
© 1982-2012 IEEE.


Profundice en los temas de investigación de 'One-Shot Fault Diagnosis of Three-Dimensional Printers through Improved Feature Space Learning'. En conjunto forman una huella única.

Citar esto