Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

Diego Cabrera, Fernando Sancho, Jianyu Long, Rene Vinicio Sanchez, Shaohui Zhang, Mariela Cerrada, Chuan Li

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

37 Citas (Scopus)

Resumen

At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.

Idioma originalInglés
Número de artículo8718595
Páginas (desde-hasta)70643-70653
Número de páginas11
PublicaciónIEEE Access
Volumen7
DOI
EstadoPublicada - 1 ene. 2019

Huella

Profundice en los temas de investigación de 'Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery'. En conjunto forman una huella única.

Citar esto