Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features

Ruben Medina, Mariela Cerrada, Shuai Yang, Diego Cabrera, Edgar Estupiñan, René Vinicio Sánchez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

This paper describes a comparison of three types of feature sets. The feature sets were intended to classify 13 faults in a centrifugal pump (CP) and 17 valve faults in a reciprocating compressor (RC). The first set comprised 14 non-linear entropy-based features, the second comprised 15 information-based entropy features, and the third comprised 12 statistical features. The classification was performed using random forest (RF) models and support vector machines (SVM). The experimental work showed that the combination of information-based features with non-linear entropy-based features provides a statistically significant accuracy higher than the accuracy provided by the Statistical Features set. Results for classifying the 13 conditions in the CP using non-linear entropy features showed accuracies of up to 99.50%. The same feature set provided a classification accuracy of 97.50% for the classification of the 17 conditions in the RC.

Idioma originalInglés
Número de artículo3033
PublicaciónMathematics
Volumen10
N.º17
DOI
EstadoPublicada - sep. 2022

Nota bibliográfica

Publisher Copyright:
© 2022 by the authors.

Huella

Profundice en los temas de investigación de 'Fault Classification in a Reciprocating Compressor and a Centrifugal Pump Using Non-Linear Entropy Features'. En conjunto forman una huella única.

Citar esto