Resumen
Agriculture plays a crucial role in the economy of any nation, as the need for food increases daily alongside the global population. However, traditional farming techniques are unable to meet the demand generated by the current population. This is why innovative approaches have been develop to automate the agricultural process. The objective of this article was to design an integrated IoT and Machine Learning model for monitoring soil pH, weather conditions, irrigation control, pests, and diseases on a farm to enhance production by early identification of issues that could impact these parameters; thereby improving crop yield, processing, and marketing through Internet of Things (IoT)-based crop cultivation.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings |
Editores | Diana Z. Briceno Rodriguez |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9798331504724 |
DOI | |
Estado | Publicada - 2024 |
Evento | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Barranquilla, Colombia Duración: 21 ago. 2024 → 24 ago. 2024 |
Serie de la publicación
Nombre | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings |
---|
Conferencia
Conferencia | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 |
---|---|
País/Territorio | Colombia |
Ciudad | Barranquilla |
Período | 21/08/24 → 24/08/24 |
Nota bibliográfica
Publisher Copyright:© 2024 IEEE.