Design and Study of Machine Learning Model based on Bagging for Breast Cancer Diagnosis

Miguel Angel Quiroz-Martinez, William Xavier Alejandro-Vergara, Monica Gomez-Rios, Maikel Yelandi Leyva-Vázquez

Producción científica: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

The rising incidence of breast cancer underscores the critical importance of early detection in enabling timely interventions to reduce serious health risks. Statistical analysis reveals that using specific attributes and bagging methods significantly enhances predictive accuracy, offering a strategic advantage in improving treatment outcomes. This improvement is particularly evident when comparing the use of a linear discriminant model to its application within a bagging framework. Results validated through the 5x2 statistical test demonstrate significant differences, supporting the hypothesis that the bagging technique markedly boosts performance levels.

Idioma originalInglés
Título de la publicación alojada2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings
EditoresDiana Z. Briceno Rodriguez
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798331504724
DOI
EstadoPublicada - 2024
Evento2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Barranquilla, Colombia
Duración: 21 ago. 202424 ago. 2024

Serie de la publicación

Nombre2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings

Conferencia

Conferencia2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024
País/TerritorioColombia
CiudadBarranquilla
Período21/08/2424/08/24

Nota bibliográfica

Publisher Copyright:
© 2024 IEEE.

Citar esto