Resumen
The rising incidence of breast cancer underscores the critical importance of early detection in enabling timely interventions to reduce serious health risks. Statistical analysis reveals that using specific attributes and bagging methods significantly enhances predictive accuracy, offering a strategic advantage in improving treatment outcomes. This improvement is particularly evident when comparing the use of a linear discriminant model to its application within a bagging framework. Results validated through the 5x2 statistical test demonstrate significant differences, supporting the hypothesis that the bagging technique markedly boosts performance levels.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings |
Editores | Diana Z. Briceno Rodriguez |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9798331504724 |
DOI | |
Estado | Publicada - 2024 |
Evento | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Barranquilla, Colombia Duración: 21 ago. 2024 → 24 ago. 2024 |
Serie de la publicación
Nombre | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 - Proceedings |
---|
Conferencia
Conferencia | 2024 IEEE Colombian Conference on Communications and Computing, COLCOM 2024 |
---|---|
País/Territorio | Colombia |
Ciudad | Barranquilla |
Período | 21/08/24 → 24/08/24 |
Nota bibliográfica
Publisher Copyright:© 2024 IEEE.