Automatic Identification of COVID-19 in Chest X-Ray Images Based on Deep Features and Machine Learning Models

Rubén D. Fonnegra, Fabián R. Narváez, Gloria M. Díaz

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

In 2020, the novel coronavirus (COVID-19), spread around the world and became a pandemic. It is diagnosed by a Real-Time Reverse Transcriptase Polymerase Chain reaction (RT-PCR) test, which requires a specialized laboratory to confirm the presence of the virus. Due to the insufficient availability of these labs, medical images have been used as an alternative diagnosis, being the most easily available and least expensive option the Chest X-Ray. As COVID-19 infected patients display very similar respiratory affections like other kinds of pneumonia, distinguish them is difficult even for experienced radiologists. In this paper, two popular deep learning architectures are used to extract deep features, which are then used for training multi-class classification machine learning models to distinguish COVID-19 from healthy, bacterial, and other viral pneumonia infections. The evaluation was performed on a dataset of 7732 images, including 1575 healthy patients, 2801 diagnosed with bacterial pneumonia, 1493 with a viral (no COVID) infection, and 1863 subjects with COVID-19 confirmed diagnosis. The general area under the ROC curve was between 93 % ± 2 % for general categories; and 99 % ± 1 % with a sensitivity of 83 % ± 2 % to identify COVID-19 infected patients.

Idioma originalInglés
Título de la publicación alojadaSmart Technologies, Systems and Applications - 2nd International Conference, SmartTech-IC 2021, Revised Selected Papers
EditoresFabián R. Narváez, Julio Proaño, Paulina Morillo, Diego Vallejo, Daniel González Montoya, Gloria M. Díaz
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas360-369
Número de páginas10
ISBN (versión impresa)9783030991692
DOI
EstadoPublicada - 2022
Evento2nd International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2021 - Quito, Ecuador
Duración: 1 dic. 20213 dic. 2021

Serie de la publicación

NombreCommunications in Computer and Information Science
Volumen1532 CCIS
ISSN (versión impresa)1865-0929
ISSN (versión digital)1865-0937

Conferencia

Conferencia2nd International Conference on Smart Technologies, Systems and Applications, SmartTech-IC 2021
País/TerritorioEcuador
CiudadQuito
Período1/12/213/12/21

Nota bibliográfica

Publisher Copyright:
© 2022, Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Automatic Identification of COVID-19 in Chest X-Ray Images Based on Deep Features and Machine Learning Models'. En conjunto forman una huella única.

Citar esto