An Immersive Training Approach for Induction Motor Fault Detection and Troubleshooting

Gustavo Caiza, Marco Riofrio-Morales, Angel Robalino-Lopez, Orlando R. Toscano, Marcelo V. Garcia, Jose E. Naranjo

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución de conferenciarevisión exhaustiva

Resumen

Industry 4.0 has gained drive in the last few years since most companies at the industrial level need to update and optimize their production chain. Restructuring their processes and improving their human resources skills is imperative if they want to remain competitive. This research presents the development of a virtual reality system for induction motor troubleshooting training. Two sample groups were taken as references. The first one was trained with the VR system, while the second group worked with a conventional methodology. With the use of the proposed system, there was a time reduction of 57.73%. In terms of knowledge acquisition, it was possible to confirm, with a p-value lower than 0.05, that the VR system is more efficient than the conventional methodology. Finally, the system’s usability was evaluated utilizing the System Usability Scale (SUS), obtaining an average value of 73.33.

Idioma originalInglés
Título de la publicación alojadaAugmented Reality, Virtual Reality, and Computer Graphics - 8th International Conference, AVR 2021, Proceedings
EditoresLucio Tommaso De Paolis, Pasquale Arpaia, Patrick Bourdot
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas499-510
Número de páginas12
ISBN (versión impresa)9783030875947
DOI
EstadoPublicada - 2021
Evento8th International Conference on Augmented Reality, Virtual Reality and Computer Graphics, AVR 2021 - Virtual, Online
Duración: 7 sep. 202110 sep. 2021

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen12980 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia8th International Conference on Augmented Reality, Virtual Reality and Computer Graphics, AVR 2021
CiudadVirtual, Online
Período7/09/2110/09/21

Nota bibliográfica

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'An Immersive Training Approach for Induction Motor Fault Detection and Troubleshooting'. En conjunto forman una huella única.

Citar esto