A Novel Hybrid Fractal Antenna Design for Ultra-Wideband Application

Rafael A. Lituma-Guartan, Josue B. Benavides-Aucapifia, Danilo F. Poveda-Pulla, Luis F. Guerrero-Vasquez, Paul A. Chasi-Pesantez

Resultado de la investigación: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

7 Citas (Scopus)


In this article, the up-to-date design of an antenna in the shape of Chakana, 'Andes Cross' or 'Inka Cross' will be presented and meticulously analyzed. The design base-structure is a planar monopole that goes along with different modifications related to fractal geometry concepts due to its main properties miniaturization, operability, self-similarity, and space-filling. The utilization of the second iteration of Koch fractal in the ground plane and Sierpinski second iteration in the patch allows an improvement of the Ultra-Wideband (UWB)characteristics by acquiring reflection in all of the 3.1 to 10.6 GHz range designated by the Federal Communications Commission (FCC). In order to improve the reflection present in high frequencies a ground-plane Notch is used; furthermore, so as to reject the frequency band considered for IEEE 802.11A, WLAN-HIPERLAN/2 and the Industrial, Scientific and Medical band (ISM band)located between 5.15 and 5.82 GHz, the implementation of an H-shaped Notch filter on the patch is carried out. The dimensions optimized for this fractal antenna are 30mmx33mm, mounted on an FR4 substrate with dielectric constant varepsilon r=4.4, a thickness of h=1.5 and a tangent of losses of (j=O.02, obtaining a bandwidth of 3.25 to 11.36 GHz with a VSWR<2 over the entire frequency range except for the rejected frequencies for ISM. Also, the H-Shaped Notch filter with an effective length of approximately 23.14 mm is positioned around of 4 mm from the feed line to ensure an optimal rejection of-4.85 dB at the center frequency of 5.41 GHz. Therefore, based on the combination of the fractal geometries Koch and Sierpinski proposed, a new Hybrid Fractal Antenna Design for UWB application with a nearly omnidirectional radiation pattern, adequate 50 impedance and good return loss less than-10dB over the entire UWB range is presented.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2018 10th IEEE Latin-American Conference on Communications, LATINCOM 2018
EditoresCarlos A. Gutierrez, Ramiro Velazquez, Andrea Rodriguez
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781538667545
ISBN (versión impresa)9781538667545
EstadoPublicada - 15 ene. 2019
Evento10th IEEE Latin-American Conference on Communications, LATINCOM 2018 - Guadalajara, México
Duración: 14 nov. 201816 nov. 2018

Serie de la publicación

NombreProceedings - 2018 10th IEEE Latin-American Conference on Communications, LATINCOM 2018


Conferencia10th IEEE Latin-American Conference on Communications, LATINCOM 2018

Nota bibliográfica

Publisher Copyright:
© 2018 IEEE.


Profundice en los temas de investigación de 'A Novel Hybrid Fractal Antenna Design for Ultra-Wideband Application'. En conjunto forman una huella única.

Citar esto