A dictionary sparse based representation of vibration signals for gearbox fault detection

Ruben Medina, Ximena Alvarez, Diana Jadan, Jean Carlo Macancela, Rene Vinicio Sanchez, Mariela Cerrada

Resultado de la investigación: Contribución a una conferenciaDocumento

2 Citas (Scopus)

Resumen

© 2017 IEEE. Detection of faults in the early stages for rotating machinery is important for optimizing maintenance chores and avoiding severe damages to other parts. An approach based on Dictionary learning for sparse representation aiming at gearbox fault detection is proposed. A gearbox vibration signal database with 900 records considering the normal case and nine different faults is analyzed. A dictionary is learned using a training set of signals from the normal case. This dictionary is used for obtaining the representation of signals in the test set considering either normal or faulty condition vibration signals. The dictionary based representation is analyzed for extracting features useful for detection of faults. The analysis is performed considering different load conditions. Additionally the Analysis of Variance (ANOVA) is performed for ranking the extracted features. Results are promising as there are significant statistical differences between the normal case and each of the recorded faults. Comparison between faults also shows that faults tends to group into several clusters in the feature space where classification of faults could be feasible.
Idioma originalInglés
Páginas198-203
Número de páginas6
DOI
EstadoPublicada - 9 dic. 2017
Evento2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017 - Shanghai, China
Duración: 16 ago. 201718 ago. 2017

Conferencia

Conferencia2017 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2017
Título abreviadoSDPC 2017
País/TerritorioChina
CiudadShanghai
Período16/08/1718/08/17

Huella

Profundice en los temas de investigación de 'A dictionary sparse based representation of vibration signals for gearbox fault detection'. En conjunto forman una huella única.

Citar esto