Abstract
Is presented a non-supervised method for feature selection based on similarity index, which is applied in a brain-computer interface (BCI) to recognize gait preparation/stops. Maximal information compression index is here used to obtain redundancies, while representation entropy value is employed to find the feature vectors with high entropy. EEG signals of six subjects were acquired on the primary cortex during walking, in order to evaluate this approach in a BCI. The maximum accuracy was 55% and 85% to recognize gait preparation/stops, respectively. Thus, this method can be used in a BCI to improve the time delay during dimensionality reduction.
Original language | English |
---|---|
Title of host publication | Biosystems and Biorobotics |
Publisher | Springer International Publishing |
Pages | 1469-1474 |
Number of pages | 6 |
DOIs | |
State | Published - 2017 |
Publication series
Name | Biosystems and Biorobotics |
---|---|
Volume | 15 |
ISSN (Print) | 2195-3562 |
ISSN (Electronic) | 2195-3570 |
Bibliographical note
Funding Information:Acknowledgments Authors would like to thank CNPq, CAPES, FAPES and SENESCYT for supporting this research.
Publisher Copyright:
© 2017, Springer International Publishing AG.