Formation of pyramid-like nanostructures in MBE-grown Si films on Si(001)

N. Galiana, P. P. Martin, L. Garzón, E. Rodríguez-Cañas, C. Munuera, F. Esteban-Betegón, M. Varela, C. Ocal, M. Alonso, A. Ruiz

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometer-scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra-high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks, and square pit (inverted pyramid) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nanoscale entities (islands or pits) display certain self assembly and ordering, concerning size, shape, and spacing. Film growth sequence follows the 'islands-coalescence-2D growth' pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature. © Springer-Verlag 2011.
Original languageEnglish
Pages (from-to)731-738
Number of pages8
JournalApplied Physics A: Materials Science and Processing
DOIs
StatePublished - 1 Mar 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Formation of pyramid-like nanostructures in MBE-grown Si films on Si(001)'. Together they form a unique fingerprint.

Cite this