Predicción de gases de escape en motores otto mediante la PME empleando RNA

Translated title of the contribution: Exhaust gas prediction in otto engines using PME and RNA

Wilmer Contreras, Yasmany Aguilar, Pablo León, Daniel Piña

Research output: Contribution to journalArticlepeer-review


This document deals with the prediction of exhaust gases from a provoked ignition engine (MEP), through its mean effective pressure (PME), through the use of artificial neural networks (ANN). The methodology applied consists of acquiring signals from the PME, load, revolutions per minute (rpm) and the manifold absolute pressure sensor (MAP) of the engine of the armfield dynamometric bench cm11, of which it obtains a database and that through statistical analysis it is determined that to predict polluting emissions it is necessary to apply cascade RNA, that is, first the engine load is predicted and therefore the exhaust gases, with which a rating error less than 10e-4. For the validation of this project an experimental analysis is carried out, which consists in acquiring new engine data to check the percentage of error between the values simulated by the RNAs and the actual values, where there is an error of less than 2% and 3% for the prediction of the load and the exhaust gases respectively.

Translated title of the contributionExhaust gas prediction in otto engines using PME and RNA
Original languageSpanish
Pages (from-to)351-365
Number of pages15
JournalRISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Issue numberE30
StatePublished - Jun 2020


Dive into the research topics of 'Exhaust gas prediction in otto engines using PME and RNA'. Together they form a unique fingerprint.

Cite this