Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation

Diego Cabrera, Fernando Sancho, Chuan Li, Mariela Cerrada, René Vinicio Sánchez, Fannia Pacheco, José Valente de Oliveira

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Signals captured in rotating machines to obtain the status of their components can be considered as a source of massive information. In current methods based on artificial intelligence to fault severity assessment, features are first generated by advanced signal processing techniques. Then feature selection takes place, often requiring human expertise. This approach, besides time-consuming, is highly dependent on the machinery configuration as in general the results obtained for a mechanical system cannot be reused by other systems. Moreover, the information about time events is often lost along the process, preventing the discovery of faulty state patterns in machines operating under time-varying conditions. In this paper a novel method for automatic feature extraction and estimation of fault severity is proposed to overcome the drawbacks of classical techniques. The proposed method employs a Deep Convolutional Neural Network pre-trained by a Stacked Convolutional Autoencoder. The robustness and accuracy of this new method are validated using a dataset with different severity conditions on failure mode in a helical gearbox, working in both constant and variable speed of operation. The results show that the proposed unsupervised feature extraction method is effective for the estimation of fault severity in helical gearbox, and it has a consistently better performance in comparison with other reported feature extraction methods.

Original languageEnglish
Pages (from-to)53-64
Number of pages12
JournalApplied Soft Computing Journal
Volume58
DOIs
StatePublished - 1 Sep 2017

Bibliographical note

Funding Information:
The authors want to thank to R&D projects TIN2012-37434 and TIN2013-41086-P supported by Ministerio de Econom?a y Competitividad of Gobierno de Espa?a and co-financed by the European FEDER funds by support of this research work. The work was sponsored by the GIDTEC project No. 002-002-2016-03-03 supported by Universidad Polit?cnica Salesiana sede Cuenca, and the Prometeo Project of the Secretariat for Higher Education, Science, Technology and Innovation (SENESCYT) of the Republic of Ecuador. The experimental work was developed at the GIDTEC research group lab of the Universidad Polit?cnica Salesiana sede Cuenca, Ecuador.

Publisher Copyright:
© 2017 Elsevier B.V.

Keywords

  • Auto-encoder
  • Convolution
  • Deep learning
  • Helical gearbox
  • Wavelet packets

Fingerprint

Dive into the research topics of 'Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation'. Together they form a unique fingerprint.

Cite this