A Fine Dry-Electrode Selection to Characterize Event-Related Potentials in the Context of BCI

Vinicio Changoluisa, Pablo Varona, Francisco B. Rodriguez

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


A brain-computer interface (BCI) detects brain activity and converts it to external commands, facilitating the interaction with external devices. One way to implement a BCI is through event-related potentials (ERP), which are positive or negative voltage deflections detected by electroencephalography (EEG) through conductive electrodes. A very promising technology of dry electrodes has been used in recent years, which is much easier and faster to install; useful also for daily life applications. But the disadvantage is that its signal-to-noise ratio is lower compared to traditional wet electrodes technology. Thus, we hypothesized that an appropriate selection of dry electrodes allows the recovery of much more information than traditional standard electrodes and therefore improves the BCI performance. This work shows the importance of electrode selection to obtain a better detection of the ERPs of the EEG signal with a minimum number of electrodes in a personalized manner. To illustrate this problem, we designed a BCI experiment based on P300-ERPs with a dry electrodes wireless EEG system and we evaluated its performance with two electrode selection methodologies designed for this purpose in 12 subjects. The experimental analysis of this work shows that our electrode selection methodology allows the P300-ERPs to be detected with greater precision than a standard electrode set choice. Besides, this minimum electrode selection methodology allows dealing with the well-known problem of inter- and intrasubject variability of the EEG signal, thus customizing the optimal selection of electrodes for each individual. This work contributes to the design of more friendly BCIs through a reduction in the number of electrodes, thus promoting more precise, comfortable, and lightweight equipment for real-life BCI applications.

Original languageEnglish
Title of host publicationAdvances in Computational Intelligence - 16th International Work-Conference on Artificial Neural Networks, IWANN 2021, Proceedings
EditorsIgnacio Rojas, Gonzalo Joya, Andreu Catala
PublisherSpringer Science and Business Media Deutschland GmbH
Number of pages12
ISBN (Print)9783030850296
StatePublished - 2021
Event16th International Work-Conference on Artificial Neural Networks, IWANN 2021 - Virtual, Online
Duration: 16 Jun 202118 Jun 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12861 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference16th International Work-Conference on Artificial Neural Networks, IWANN 2021
CityVirtual, Online

Bibliographical note

Funding Information:
The authors thank Vanessa Salazar for her collaboration in acquiring data from 4 of the 12 subjects as part of her master thesis. This work was funded by Spanish projects of Ministerio de Econom?a y Competitividad/FEDER TIN2017-84452-R, PGC2018-095895-B-I00, PID2020-114867RB-I00 (http://www.mineco.gob.es/), Predoctoral Research Grants 2015-AR2Q9086 of the Government of Ecuador through the Secretar?a de Educaci?n Superior, Ciencia, Tec-nolog?a e Innovaci?n (SENESCYT) and Universidad Polit?cnica Salesiana 041-02-2021-04-16.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.


  • Bayesian linear discriminant analysis
  • EEG signal
  • Electrode selection
  • Event-related potentials
  • Inter- and intrasubject variability
  • Low-cost BCI
  • Oddball paradigm


Dive into the research topics of 'A Fine Dry-Electrode Selection to Characterize Event-Related Potentials in the Context of BCI'. Together they form a unique fingerprint.

Cite this